"Douglas W. Jones" <jones@ics.uiowa.edu> on 02/10/2002 12:55:20 PM

Te: vsz@FEC
o

Subjeet: Late comment on Voting System Standards

After attending the west02 conference, I have an addtional suggestion.
My suggestion 1s available in HTML (more readable) 1in

http://www.cs.uiowa.edu/~jones/voting/fec2.htm]

and it is appended in plain text format below:

TS T T T T e s s s e m m s e e e e s e e e h m e e e e e = m o e m

Added Comments on the FEC's voting System Standards

Dougtas W. Jones .
Department of Computer Science
MacLean Hali

University of Iowa

Iowa City, Iowa 52242

(319)335-0740
Jones@cs.uiowa. edu

Submitted to the FEC bﬁ E-mail, Feb 10, 2002; This material is also
indexed on the web at ttp:f/www.cs.u1owa.eduf~30nesfvot1ngl

After reading and commenting on the voting system standards,
found at

http://fecwebl. fec.gov/pages/vss/vss.html

and after attending the workshop on Election Standards and
Technology in washington on January 31 and February 1, I've had a
chance to step back and think about some of the big-picture elements

of the problem of setting appropriate voting system standards.
The Problem with Software standards

In my first comments on the july 13 draft, I didn't saﬁ much about

the codin? standards. If memory serves me carrectly, t eg were

stated relatively briefly, and they were sufficientiy subjective that I
could 1ive with them, In the Dec.?13 draft, however, things seem
tighter, more objective, and therefore more problematic. Perhaps 1

just read them ih more detail this time, but the net result was that I
ound the standards to be far more offensive.

AS a genera1 rule, coding guidelines are gogd, but objectively

testable coding standards are bad. It is good to demand clear and
readable code, but attempts to codif¥ readability are rarel

successful. The analogy with readability rules for the English

language is useful. In the world of education, there have heen many
attempts to codify readability, particularly with regard to children's
literature, but the very best of children's literature generally ignores

B

these readability rules!

Ham, was apparently written as something of an exercise in adhering
to an extremely strict vocabulary Timit, and it's an extraor iary work
of Titerature. Despite such exceptions, mest children's 1iterature
written to meet such standards is mediocre and much of it is awful.

There are a few exceptions. My favorite, Dr, Seuss's Green Egﬁs and
d

Furthermore, codifying sgecific stylistic programming standards
prevents innovation on the part of system developers.

Therefore, I strongly urge that the objective coding standards found
in Sections 4.2.3 and 4.2.4 of the voting system standard be dropped!
what should replace this material? The answer is found in the
section of the draft standard governing version control. The draft
standard does not mandate the use of any SEecific version control
methodology; no specific automated approach is required, and in

fact, there is no requirement for automation.

Instead, the standard merely requires that an effective version
control methodo]ogy be used! I propose a very similar requirement
with regard to coding standards, with one addition. I propose that
every voring system vendor be re$uired to provide, as one of the
deliverables required for the software audit process, a copy of the
coding guidelines they have used in developing their software. Here
is my proposal:

4 software Standards

4.1 sScope

4.2 software Design_and Coding Standards
4.2.3 software Development Guidelines

Software purpose-written for voting systems should be

modular, but the exact nature of a software module depends on
the particular programming language being used. Modules are

not necessarily the same thing as source files; in some
languages, it i1s logical to include multiple related modules in
one File. Modules are not necessarily functions; in some
]anguaggs it is desirable to include multiple related functions
in a module.

The developer of voting software is responsible for ado ting
clear guidelines for code modularity, where these guideiines
make specific provisions for the programming language,
development environment and operating system being used.
These guidelines must:

a) Incerporate widely accepted practices followed by
programmers using the language in question. Eccentric
approaches to medularization are discouraged unless they have
clearly documented benefits.

b) Clearly define how modutes (Yogical units of a program)
relate to source files (physical units of the program?.

C) Ensure that the relationships between the modules making
up the program are clearly documented. which modules does
each module depend on, and what is the nature of the
dependency?

d) Ensure that the interface each module offers to other
modules is clearly documented. what kinds of things does

each module make availabte for use b{ other modules, and

what must the users of these things know in order to make use
of them. variables, types and functions are among the kinds of

things that a module may export and that must be documented.

e) Encourage the use of appropriate granu]aritﬁ of
modularization. Excessively targe modules are hard to read,
and_the relationships between large numbers of excessively
small modules are hard to understand.

f) Ensure that each module clearly defined name, and so that
these names are used in a uniform way.

g} Ensure that each identifier used in the program is named in

a4 way that ensures readability. Mnemonic or se f-explanatory
names should be encouraged, as should regular naming

conventions that allow the meanings of short identifiers to be
immediately understood: wide1¥ used examples of the latter

are that x and y, when used alone, are display coordinates, i,
when used alone, is an array index, and p, when used alone, is a
pointer.

h) Discourage use of obscure or difficult to understand
features of the programming language, and where such

features are used, require clear documentation that warns the
reader of the obscurity, documents the function and justifies
its use. Examples of such problematic features abound in ¢

and C++; the (a?b:c) construct, the comma operator, confusion
betwaen = and == in Boolean expressions, and similar features
should be singled out, but there are equally dangerous features
in other languages.

or editing environments. pPreferred practice should allow t
software to be printed and easily readable on standard 8.5 hg

11 inch paper, and if this is not possible, it must be possible to
print the software on 11 by 17 inch paper. This leads naturally

to Jimits of around 80 to 160 characters per Tine of text.

1) Require typography that is not dependant on unusual di5ﬁ1ay
e

4.2.4 Conformance to Development Guidelines

In general, software developed specifically for the voting
application should conform to the coding guidelines required
by section 4.2.3. However, the purpose of these guidelines is
T0 encourage the development of code that is relatively easy
for a knowledgable programmer to read, and in general, rigid
enforcement of objective guidelines has not been shown to be
an effective way to meet this goal.

Therefore, departure from previously adoﬁted guidelines may
be permitted when, in the judgement of the programmer, the
guidelines Tead to less readable code. Source code reviewers
may, however, question such deviation if the benefits of
nonconformance are not obvious and are not documented.

